Chinese Journal of Tissue Engineering Research ›› 2014, Vol. 18 ›› Issue (28): 4455-4462.doi: 10.3969/j.issn.2095-4344.2014.28.005
Previous Articles Next Articles
Fu Zhi-jie 1, 2, Zhang Ju-feng 1, 2, 3, Wang Da-ping 1, 2, 3, Chen Jie-lin 1, 2, 3, Duan Li 1, 2, 3, He Mei-jian 1, 2, Li Qing-qing 1, 2, Li Wen-cui 1, 2, Xiong Jian-yi 1, 2, 3
Online:
2014-07-02
Published:
2014-07-02
Contact:
Xiong Jian-yi, Professor, Chief physician, Master’s supervisor, Shenzhen Second Hospital Clinical School of Shantou University Medical College, Shenzhen 518035, Guangdong Province, China; Department of Orthopedics, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China; Shenzhen Key Laboratory of Tissue Engineering, Shenzhen 518035, Guangdong Province, China
About author:
Fu Zhi-jie, Studying for master’s degree, Shenzhen Second Hospital Clinical School of Shantou University Medical College, Shenzhen 518035, Guangdong Province, China; Department of Orthopedics, Shenzhen Second People’s Hospital, Shenzhen 518035, Guangdong Province, China
Supported by:
the Natural Science Foundation of Guangdong Province, No. S2012010008129; the Special Funds for the Development of Strategic Emerging Industries of Shenzhen City, No. 20120614154551201; the International Cooperation Project of Commission on Science and Technology Innovation of Shenzhen City, No. GJHZ20130412153906740; the Technology Development Project of Commission on Science and Technology Innovation of Shenzhen city, No. CXZZ20120614160234842
CLC Number:
Fu Zhi-jie, Zhang Ju-feng, Wang Da-ping, Chen Jie-lin, Duan Li, He Mei-jian, Li Qing-qing, Li Wen-cui, Xiong Jian-yi. Expression of osteogenic genes in rat bone marrow mesenchymal stem cells infected by lentivirus carrying hypoxia-inducible factor-1 alpha [J]. Chinese Journal of Tissue Engineering Research, 2014, 18(28): 4455-4462.
2.3 成功包装了携带低氧诱导因子1α的慢病毒 用构建的慢病毒表达载体Lenti-HIF-1α-eGFP与LentiPac HIV 混合包装质粒共转染293Ta细胞,包装出病毒后收集病毒原液,用浓缩的慢病毒感染293Ta细胞48 h后,根据孔稀释法计算出病毒滴度为5×107 TU/mL。 2.4 SD大鼠骨髓间充质干细胞的鉴定 2.4.1 骨髓间充质干细胞的形态学观察 骨髓细胞接种于培养皿后,镜下可见大量大小不一的圆形细胞悬浮于培养液中。培养24 h后开始有细胞贴壁生长,呈多边形、梭形。通过换液去除未贴壁细胞后,可见短梭形、星形细胞分散在培养皿贴壁生长。培养5 d后,细胞排列较整齐,融合成片生长,融合率达80-90%(图3A)。消化传代至第3代后,细胞形态基本一致,为长梭形,朝向同一方向排列,呈“鱼群”样(图3C)。"
2.6 荧光定量RT-PCR检测各组各时相大鼠骨髓间充质干细胞中成骨因子表达水平 荧光定量PCR检测骨髓间充质干细胞中骨形态发生蛋白2、骨钙蛋白、骨桥蛋白、碱性磷酸酶mRNA的表达水平,结果显示:与空载体组及空白对照组相比,实验组各成骨因子表达水平显著增高(P值分别为0.037,0.047,0.038,0.033,均小于0.05)。①实验组大鼠骨髓间充质干细胞中骨形态发生蛋白2的表达水平在转染后1,4,7,14 d分别为空载体组的2.96倍、6.85倍、6.48倍、6.17倍(图6A)。②实验组大鼠骨髓间充质干细胞中骨钙蛋白的表达水平在转染后1,4,7,14 d分别为空载体组的2.50倍、5.33倍、7.13倍、7.07倍(图6B)。③实验组大鼠骨髓间充质干细胞中骨桥蛋白的表达水平在转染后1,4,7,14 d分别为空载体组的2.44倍、4.98倍、6.27倍、7.32倍(图6C)。④实验组大鼠骨髓间充质干细胞中碱性磷酸酶的表达水平在转染后1,4,7,14 d分别为空载体组的2.27倍、4.43倍、5.81倍、5.38倍(图6D)。空载体组与空白对照组相比,各成骨因子表达水平差异无显著性意义(P > 0.05)。"
[1]Ishihara A, Bertone AL.Cell-mediated and direct gene therapy for bone regeneration.Expert Opin Biol Ther. 2012;12(4): 411-423. [2]Lin BN, Whu SW, Chen CH, et al. Bone marrow mesenchymal stem cells, platelet-rich plasma and nanohydroxyapatite-type I collagen beads were integral parts of biomimetic bone substitutes for bone regeneration.J Tissue Eng Regen Med. 2013;7(11):841-854. [3]Chen K, Shi P, Teh TK,et al.In vitro generation of a multilayered osteochondral construct with an osteochondral interface using rabbit bone marrow stromal cells and a silk peptide-based scaffold.J Tissue Eng Regen Med. 2013. [Epub ahead of print] [4]Salomone R, Bento RF, Costa HJ, et al.Bone marrow stem cells in facial nerve regeneration from isolated stumps.Muscle Nerve. 2013;48(3):423-429. [5]Lee K, Majumdar MK, Buyaner D,et al.Human mesenchymal stem cells maintain transgene expression during expansion and differentiation.Mol Ther. 2001;3(6):857-866. [6]Liu H, Peng H, Wu Y,et al.The promotion of bone regeneration by nanofibrous hydroxyapatite/chitosan scaffolds by effects on integrin-BMP/Smad signaling pathway in BMSCs. Biomaterials. 2013;34(18):4404-4417. [7]Yin F, Battiwalla M, Ito S,et al. Bone marrow mesenchymal stromal cells to treat tissue damage in allogeneic stem cell transplant recipients: correlation of biological markers with clinical responses.Stem Cells. 2014;32(5):1278-1288. [8]Palomäki S, Pietilä M, Laitinen S, et al. HIF-1α is upregulated in human mesenchymal stem cells.Stem Cells. 2013;31(9): 1902-1909. [9]Zhao B, Wang Q, Tao T,et al.The in vitro and in vivo treatment effects of overexpressed lentiviral vector-mediated human BMP2 gene in the femoral bone marrow stromal cells of osteoporotic rats.Int J Mol Med. 2013;32(6):1355-1365. [10]Hou HM, Xiang C, Guo L,et al.Construction of lentivirus vector containing human LIM mineralization protein-1 (LMP-1) and its expression in rat bone mesenchymal stem cells.Zhongguo Gu Shang. 2013;26(10):841-844. [11]Semenza GL.HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations.J Clin Invest. 2013;123(9):3664-3671. [12]Shen C, Beroukhim R, Schumacher SE,et al. Genetic and functional studies implicate HIF1α as a 14q kidney cancer suppressor gene.Cancer Discov. 2011;1(3):222-235. [13]Rodolico V, Arancio W, Amato MC,et al.Hypoxia inducible factor-1 alpha expression is increased in infected positive HPV16 DNA oral squamous cell carcinoma and positively associated with HPV16 E7 oncoprotein.Infect Agent Cancer. 2011;6(1):18. [14]Gao YS, Ding H, Xie XT, et al. Osteogenic induction protects rat bone marrow-derived mesenchymal stem cells against hypoxia-induced apoptosis in vitro.J Surg Res. 2013;184(2): 873-879. [15]Xia Y, Choi HK, Lee K.Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors.Eur J Med Chem. 2012;49:24-40. [16]Xiang ZL, Zeng ZC, Fan J,et al.Gene expression profiling of fixed tissues identified hypoxia-inducible factor-1α, VEGF, and matrix metalloproteinase-2 as biomarkers of lymph node metastasis in hepatocellular carcinoma.Clin Cancer Res. 2011;17(16):5463-5472. [17]Kwon TG, Zhao X, Yang Q,et al.Physical and functional interactions between Runx2 and HIF-1α induce vascular endothelial growth factor gene expression.J Cell Biochem. 2011;112(12):3582-3593. [18]Liu XD, Deng LF, Wang J, et al.Regulation of hypoxia inducible factor-1alpha on osteoblast function in osteogenesis.Zhonghua Yi Xue Za Zhi. 2007;87(47): 3357-3361. [19]Pacicca DM, Patel N, Lee C,et al. Expression of angiogenic factors during distraction osteogenesis.Bone. 2003;33(6): 889-898. [20]Arthur A, Zannettino A, Gronthos S.The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair.J Cell Physiol. 2009;218(2):237-245. [21]黄柯鑫,赵斌.阳离子脂质体转染效率影响因素的研究进展[J].医学理论与实践,2012,25(14):1704-1705,1710. [22]Nowakowski A, Andrzejewska A, Janowski M, et al.Genetic engineering of stem cells for enhanced therapy.Acta Neurobiol Exp (Wars). 2013;73(1):1-18. [23]Hagmann S, Moradi B, Frank S,et al.Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells.BMC Musculoskelet Disord. 2013; 14:223. [24]Escors D, Breckpot K.Lentiviral vectors in gene therapy: their current status and future potential.Arch Immunol Ther Exp (Warsz). 2010;58(2):107-119. [25]Schambach A, Zychlinski D, Ehrnstroem B,et al.Biosafety features of lentiviral vectors.Hum Gene Ther. 2013;24(2): 132-142. [26]Arthur A, Zannettino A, Gronthos S.The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair.J Cell Physiol. 2009;218(2):237-245. [27]Hagmann S, Moradi B, Frank S,et al.Different culture media affect growth characteristics, surface marker distribution and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells.BMC Musculoskelet Disord. 2013; 14:223. [28]Cortes Y, Ojeda M, Araya D,et al.Isolation and multilineage differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses.BMC Vet Res. 2013;9(1):133. [29]Moon JS, Oh SH, Jeong YW,et al.Relaxin Augments BMP 2-Induced Osteoblast Differentiation and Bone Formation.J Bone Miner Res. 2014. [Epub ahead of print] [30]Lü K, Zeng D, Zhang Y,et al.BMP-2 gene modified canine bMSCs promote ectopic bone formation mediated by a nonviral PEI derivative.Ann Biomed Eng. 2011;39(6): 1829-1839. [31]Wu D, Zhang R, Zhao R,et al.A novel function of novobiocin: disrupting the interaction of HIF 1α and p300/CBP through direct binding to the HIF1α C-terminal activation domain. PLoS One. 2013;8(5):e62014. |
[1] | Pu Rui, Chen Ziyang, Yuan Lingyan. Characteristics and effects of exosomes from different cell sources in cardioprotection [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 1-. |
[2] | Lin Qingfan, Xie Yixin, Chen Wanqing, Ye Zhenzhong, Chen Youfang. Human placenta-derived mesenchymal stem cell conditioned medium can upregulate BeWo cell viability and zonula occludens expression under hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(在线): 4970-4975. |
[3] | Hou Jingying, Yu Menglei, Guo Tianzhu, Long Huibao, Wu Hao. Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival and vascularization through the activation of HIF-1α/MALAT1/VEGFA pathway [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 985-990. |
[4] | Shi Yangyang, Qin Yingfei, Wu Fuling, He Xiao, Zhang Xuejing. Pretreatment of placental mesenchymal stem cells to prevent bronchiolitis in mice [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 991-995. |
[5] | Liang Xueqi, Guo Lijiao, Chen Hejie, Wu Jie, Sun Yaqi, Xing Zhikun, Zou Hailiang, Chen Xueling, Wu Xiangwei. Alveolar echinococcosis protoscolices inhibits the differentiation of bone marrow mesenchymal stem cells into fibroblasts [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 996-1001. |
[6] | Fan Quanbao, Luo Huina, Wang Bingyun, Chen Shengfeng, Cui Lianxu, Jiang Wenkang, Zhao Mingming, Wang Jingjing, Luo Dongzhang, Chen Zhisheng, Bai Yinshan, Liu Canying, Zhang Hui. Biological characteristics of canine adipose-derived mesenchymal stem cells cultured in hypoxia [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1002-1007. |
[7] | Geng Yao, Yin Zhiliang, Li Xingping, Xiao Dongqin, Hou Weiguang. Role of hsa-miRNA-223-3p in regulating osteogenic differentiation of human bone marrow mesenchymal stem cells [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1008-1013. |
[8] | Lun Zhigang, Jin Jing, Wang Tianyan, Li Aimin. Effect of peroxiredoxin 6 on proliferation and differentiation of bone marrow mesenchymal stem cells into neural lineage in vitro [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1014-1018. |
[9] | Zhu Xuefen, Huang Cheng, Ding Jian, Dai Yongping, Liu Yuanbing, Le Lixiang, Wang Liangliang, Yang Jiandong. Mechanism of bone marrow mesenchymal stem cells differentiation into functional neurons induced by glial cell line derived neurotrophic factor [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1019-1025. |
[10] | Duan Liyun, Cao Xiaocang. Human placenta mesenchymal stem cells-derived extracellular vesicles regulate collagen deposition in intestinal mucosa of mice with colitis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1026-1031. |
[11] | Pei Lili, Sun Guicai, Wang Di. Salvianolic acid B inhibits oxidative damage of bone marrow mesenchymal stem cells and promotes differentiation into cardiomyocytes [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1032-1036. |
[12] | Wang Xianyao, Guan Yalin, Liu Zhongshan. Strategies for improving the therapeutic efficacy of mesenchymal stem cells in the treatment of nonhealing wounds [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1081-1087. |
[13] | Wang Shiqi, Zhang Jinsheng. Effects of Chinese medicine on proliferation, differentiation and aging of bone marrow mesenchymal stem cells regulating ischemia-hypoxia microenvironment [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1129-1134. |
[14] | Kong Desheng, He Jingjing, Feng Baofeng, Guo Ruiyun, Asiamah Ernest Amponsah, Lü Fei, Zhang Shuhan, Zhang Xiaolin, Ma Jun, Cui Huixian. Efficacy of mesenchymal stem cells in the spinal cord injury of large animal models: a meta-analysis [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(7): 1142-1148. |
[15] | Chen Junyi, Wang Ning, Peng Chengfei, Zhu Lunjing, Duan Jiangtao, Wang Ye, Bei Chaoyong. Decalcified bone matrix and lentivirus-mediated silencing of P75 neurotrophin receptor transfected bone marrow mesenchymal stem cells to construct tissue-engineered bone [J]. Chinese Journal of Tissue Engineering Research, 2021, 25(4): 510-515. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 317
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 244
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||